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Abstract

Olfaction is a molecular sense, in which information carried in airborne chemicals is transformed into patterns of brain activity that underlie odor 
perception. It is probably the most important sense for survival of most animal species ranging from insects to mammals. Detection and localization of 
food, avoidance of toxins and predators, and communication with cohorts and mating partners through volatile pheromones are examples of the range 
of olfaction dependent behavior. Olfaction in insect, both medical and agricultural fields, is well documented today. That wide knowledge of insect 
olfaction (behaviour), especially in agriculture, has contributed to the development of the Integrated Pest Management (IPM) strategies, especially the 
use of semiochemicals for luring, trapping and killing of insect pests. The present literature review addresses the following general subjects: notion of 
the pest, importance of the sensilla in insect life, general mechanism of chemical signals transduction, odor identification and discrimination in insects, 
chemical messengers (pheromones and allelochemicals), insect-plant interactions, ratio-specific odor recognition, and evolution in pest-control strategies 
and the use of plant extracts in protecting stored-products. The purpose is to contribute in helping beginners in the modern agricultural entomology field 
for rapid familiarization with these terms frequently used in IPM strategies. 
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Introduction

Insect relies on chemosensory or chemoreceptor organs located on antennae, 
mouthparts, wings, legs and ovipositors to live. In general, the chemosensory 
includes gustatory receptors involved in sense of taste and olfactory receptors 
involved in sense of odor. In other words, the olfactory receptors are most 
abundant on the antennae, but may also be associated with the mouthparts 
or external genitalia (especially near the tip of the female’s ovipositor); 
while the taste receptors are most abundant on the mouthparts, but may 
also be found on the antennae, tarsi, and genitalia. The gustatory receptors 
are commonly described as thick-walled hairs, pegs, or pits; whereas 
olfactory receptors are usually thin-walled pegs, cones, or plates with 
numerous pores. Anyway, in either case the odor molecules enter through 
the openings (pores) located on the cuticle where the dendrites of several 
(usually up to five) sensory neurons are exposed. In sensory neuron cells, 
there are receptor genes encoding proteins, which mediate odor signal 
transduction. These small soluble proteins called OBPs (Odorant Binding 
Proteins) are secreted in large quantities by support cells surrounding the 
Olfactory Sensory Neurons (OSNs) [1]. They bind odorant messages 
allowing therefore, an insect to locate food source, aggregate, and mate [2-4]. 

Notion of the Pest

In agriculture, an insect species is considered as Pest if it can cause important 
damage to the growing crops or stored-products or livestock production. 
Thus, because of the competition with human beings for staple food, hundreds 
of insect species are classified as pests. They feed on leaves or burrows in 
stems, fruits, roots and stored grains. Those who depend on growing crops 
(e.g. green leaves) to live are called phytophagous; whereas those who feed 
on grains, especially the stored-grains, are called stored-grain pests or post-
harvest pests. In terms of preference for food (host), the phytophagous, in 
turn, can be categorized into three groups, of which: monophagous (feeding 
on plants within a single genus), oligophagous (having hosts in different 
genera within the same plant family) and polyphagous (attacking a large 
number of plants of different families) [5,6]. At a very specific level, the 
insects can be categorized as leaf feeders, stem feeders or grain feeders, 
etc. Additionally, some insect pests are aggressive only when instar (case 
of lepidopteran pests), while others are dangerous in both larval and imago 
stages. The second type of damages, which makes an insect species as pest, 
is the transmission of epidemic diseases (e.g., bacterial, viral, or fungal 
infection) to the crops or facilitation of plant infection by epidemic diseases. 
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However, beyond the damages they cause on crops and stored-products, the 
insects also play many important roles in the nature. For instance, they aid 
bacteria, fungi, and other organisms in the decomposition of organic matter, 
in soil formation as well as plant pollination [7-10]. Certain insects provide 
sources of commercially important products such as honey, silk, wax, dyes, 
or pigments, all of which can be of direct benefit to man. Other species like 
grasshopper plagues, termite swarms, large palm weevil grubs, etc are still 
sources of protein in some countries. In the biological control of the insect 
pest, many insect species are used as predators or parasites. Briefly, the word 
“Pest” is a variable notion. A species becomes a pest if it appears where it’s 
unwished or competes with human beings for staple foods.

Sensilla in Insect Survivorship

The sensilla are usually small hairs within which are housed olfactory organs 
adapted for perception of specific stimuli (e.g., touch, smell, taste, heat, cold) 
[11-15]. In most insects, Odorant receptors (ORs), gustatory receptors (GRs) 
and ionotrophic receptors (IRs) are olfactory organs (Figure 1c) mediating 
the binding of external odor molecules. Although these small sense organs 
occur all over the body surface, they are particularly abundant in antennae, 
palps, and cerci (cerci are sometimes called pincers). Antennae are the main 
organs bearing olfactory receptors [6,16,17]. They play the dominant role in 
insect’s olfaction because they are more exposed to air currents as insects 
move upwind toward an odor source [18-20]. Depending on the external 
morphology, the antennae can be classified into different types and subtypes. 
Sensilla trichodea, sensilla placodea, sensilla basiconica, sensilla chaetica, 
sensilla coeleoconica, sensilla styloconica and sensilla campaniformia are 
among of the well-characterized sense receptor types [21]. The sensilla 
can be hairs, pegs, plugged or open grooves. They can be on the surface, 
or they can be located within a depression or a pit with a restricted opening 
[22,23]. The same sensilla type can be found in different species with the 
same characteristics. But in some cases, it can have some difference between 
sensilla in different species even being the same type. For example, a 
sinsillum can have smooth surface in a given species, while in other species, 
it can be grooved or striate or pitted [24-26]. The sensillum types present 
on moth antennae can be classified into six different groups.  These are the 
sensilla trichodea, sensilla basiconica, sensilla auricillica, sensilla chaetica, 
sensilla styloconica and sensilla coeloconica.  Sensilla trichodea are very 
long, thin, porous hair-like structures with sharp pointed tips. Sensilla can be 
categorized according to their putative function as well, of which some are 
mechanoreceptors (campaniformia and sensilla chaetica) or chemoreceptors 
(sensilla basiconica) or hygro or thermosensitive. A same type can even 
be mechano and chemoreceptors at the same time (sensilla digitiformia). 
Sensilla digitiformia is also thought to be hygroreceptor because of their 
abundance on the mouthparts of some hygrophilous species that depend on 
damp or wet patchy biotopes/seasons [27]. S. trichodea are known to play a 
major role in sensing mechanical stimuli and in detecting chemical stimuli in 
insects [25,26,28,29], and are thought to be innervated by 1–3 sensory cells 
[30], while sensilla coeloconica are thermosensitive and innervated by 1–5 
sensory cells [31-33]. S. basiconica are considered to be olfactory receptors 
in phytophagous insects [25,34]. The morphology of this sensilla suggests 
that they are sensitive to many kinds of chemical stimulus [20,35-37]. 
Additionally, S. cavity is thought to be involved in perception of humidity

Mechanism of Chemical Signals Transduction

The mechanism starts by trapping chemical molecules dispersed in the 
air by special chemoreceptors or olfactory receptors expressed in the cell 
membranes of olfactory receptor neurons. Activated olfactory receptors 
initiate a signal transduction cascade which ultimately produces a nerve 
impulse (or action potential or spike). The neurons (electrically excitable cells) 
then processed and use neurotransmitter (an endogenous chemical stored in 
synaptic vesicle) to transmit signals from one neuron to the next, usually

and temperature [23] and might play a role in preventing desiccation [38]. Both 
olfaction and contact chemoreception are involved in host-plant selection, as 
well as in the integrity of insect societies, especially in nestmate recognition 
[25]. In sensilla characterization, it can have sexual dimorphism [20,39]. The 
ability of recognizing and discriminating thousands of odorant molecules in 
insects as in mammals (Figure 2) relies on specialized chemosensitive neural 
cells to express olfactory receptor proteins, which reside within segregated 
compartments called sensilla [40-42]. Lots of sensilla are located on the 
surface of the insect antennae with olfactory neurons being protected inside 
the binding of a ligand to a receptor protein is the key event in olfactory 
transduction, as it converts a chemical signal in the environment into an 
electrical signal that can be interpreted by the insect nervous system.

 

 

Figure 1: sensilla types A and B are sensilla from Sitophilus granarious 
which are classified as Sensilla coeloconica, while C, D and E are 
of Tribolium castaneum, and classified as Sensisilla basiconica, S. 
trichodea and Sensilla chaetica.



Enliven Archive | www.enlivenarchive.org

	
	
2015 | Volume 2 | Issue 13

from the axon terminal till the signals reach central nervous system. In 
other words, axon terminals (distal terminations of the branches of an axon) 
are separated from neighboring neurons by a small gap called a synapse 
[43,44], across which impulses or signals are sent before being received 
by postsynaptic receptor and in a pattern neuron-to-neuron via synapses, 
the external signals converted into internal electrical signals or impulses 
by sensory neurons (Figure 3b), ultimately reach the spinal cord and brain 
(the two constitutive components of the central nervous system). Multipolar 
neurons play an important role in this complex neural communication 
or cell-to-cell communication. They allow for the integration of a great

deal of information from other neurons. They include motor neurons 
and interneurons, and constitute the majority of neurons in the brain. We 
have to remember that second messengers intervene in this process by 
relaying signals, causing some kind of change in the activity of the cell and 
amplifying the strength of the signals that will be sent to the brain through 
glomeruli. They are a component of signal transduction cascades. In humans 
as well as most vertebrates, the sense of smell is mediated by specialized 
sensory cells of the nasal cavity (Figure 2), which can be considered 
analogous to sensory cells of the antennae of invertebrates (Figure 3) [45].

 

 

Figure 2 : Odorant Receptors and the Organization of the Olfactory System [125].

 

 

 

Figure 3: Anatomy of an olfactory sensillum [139] and Summary of odorant 
sensitivities and odorant receptor expression in different types of sensilla (Maria 
and Liqun, 2008, [13]).
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Odor Identification and Discrimination in Insects

In insects, each sensillum (Figure 3a) possesses specialized sensory cells 
called ORNs that run chemical signals inward to the central nervous 
system. The individual ORNs express specific type of odorant receptor 
proteins called OBPs whose role is to bind external odorant (Figure 3b) 
and initiate transduction. After binding the odorant, the activated receptors 
send transduction signal (Figure 3b) to the glomeruli [46,47] via second 
messengers. We have to precise that each glomerulus receives signals from 
multiple receptors that detect similar odorant features. Because multiple 
receptor types are activated due to the different chemical features of the 
odorant, multiple glomeruli will be activated as well. All of the signals 
from the glomeruli will then be sent to the brain, where the combination of 
glomeruli activation will encode the different chemical features of the odorant. 
The brain will then essentially put the pieces of the activation pattern back 
together in order to identify and perceive the odorant [46,48,49]. Odorants 
that are alike in structure activate related patterns of glomeruli, which lead 
to a similar perception in the brain [46,50-53]. Within the glomerular array, 
the synaptic organization of afferent ORN axons and dendrites of antennal 
lobe interneurons forms the mechanism underlying odor identification and 
discrimination [54-56]. Generally, each OSN expresses one (or sometimes 
a few) OR and OSNs that express the same OR converge on a single 
glomerulus in each hemisphere [48,57-61]. Anyway, studies showed that 
OSNs may innervate the entire glomerulus, or just the glomerular periphery. 
In bees, OSNs from the distal antennal segments innervate the outer layer 
of the glomerular cap, and more proximal OSNs innervate the central layers 
[62]. The current dogma is that axons from all ORNs expressing the same 
receptor converge onto one or two glomeruli of a possible 1800 glomeruli in 
each olfactory bulb [63]. We have to remember that the glomeruli are located 
near the surface of the olfactory bulb (forebrain involved in odor perception). 
And, a glomerulus is the basic unit in the odor map of the olfactory bulb. The 
primary olfactory brain center of insects, the Antennal Lobe (AL), constitutes 
the first synaptic relay station of the antennal afferent pathways, as it receives 
input from antennal olfactory sensory neurons and sends the output to higher 
brain centers [64-67]. The building blocks of the AL found in most insect 
orders are the olfactory glomeruli, in which the interactions between antennal 
and deutocerebral neurons take place [68]. Additionally, the real difference 
between an insect’s sense of smell and sense of taste lies in the form of the 
chemical it is collecting. Smelling is going with odor, while tasting occurs if 
the chemical substance is in solid or liquid status.

Chemical Messengers
Pheromones

Pheromones are chemical signals that are secreted by an animal to the outside 
and cause a specific reaction in a receiving individual of the same species 
[69]. They consist in long carbon chains derived from the metabolism of 
fatty acids [70]. The pheromones usually wind borne, but may be placed 
on soil, vegetation or various items [71,72] as messengers. As reported 
earlier, the transport of the volatiles or pheromones from the external 
environment to the olfactory receptors is mediated by small proteins, called 
OBPs [73-75] with 135–220 amino acids long [75,76]. The bound odor 
molecules are then processed and conveyed to the central nervous system 
which produces all behavioral responses thereafter on receiving species

[6,16,17]. The olfactory receptor genes encoding OBPs can be divided 
into Pheromone-Binding Proteins (PBPs) involved in the recognition of 
sex pheromones and General Odorant Binding Proteins (GOBPs) which 
are thought to participate in the recognition of general odorants [13]. 
Like OBPs, coding sequence of PBPs shows the six conserved cysteine 
residue’s position linked by three disulfide bonds [77]. Chemosensory 
Proteins (CSP) constitute another class of small binding proteins. They 
are more conserved comparatively to OBPs, and are characterized by the 
presence of 4 conserved cysteines that form two disulfide bridges [78]. They 
may evolve from the OBPs in the early development of arthropods [79].

Types of Pheromones

There are different types of pheromones according to the response they 
induce in the Perceiving Individuals [80]. The most common pheromones 
are: Sex pheromones (usually emitted by females to induce mating behavior 
in males), Aggregation pheromones (usually secreted by males to induce 
host finding behavior, defense against predators or overcome host resistance 
by mass attack), Alarm pheromones (triggered once there is a threat), Trail 
pheromones (specific in social colonies to indicate the way leading to the 
discovered-food source), and lastly, Host marking pheromones (produced 
to reduce the competition between members of the same species) [70;81]. 
We have to precise that male-produced sex attractants have been called 
aggregation pheromones, because they usually result in the arrival of both 
sexes at a calling site; whereas most sex pheromones are produced by the 
females.

Allelochemicals

In chemical ecology field, pheromones and allelochemicals are both used, 
whence the reason to make the difference between the two terms. In other 
words, like pheromones, the allelochemicals are biochemical produced 
to influence the growth, survival, and reproduction of other organisms 
(Allelopathy). They can have beneficial (positive allelopathy) or detrimental 
effects (negative allelopathy) on the emitter or the attacker [82]. As 
shown in (Figure 4), the allelochemicals can be classified into two groups 
considering whether they act as intraspecific (pheromones) or interspecific 
(allelochemicals) mediators. Allelochemicals include allomones (emitter 
species benefits), kairomones (receptor species benefits) and synomones 
(both species benefit) [83]. Basically, the volatiles released by plants (Figure 
5) can be categorized into four groups as followed [6]:

• Attractant: a chemical that causes an insect to make oriented movements 
toward the source of the stimulus. 
• Repellent: a chemical that causes an insect to make oriented movements 
away from the source. 
• Feeding or oviposition stimulant: a chemical that induces feeding or 
oviposition behavior.
• Deterrent or antifeeding stimulant: a chemical that inhibits feeding or 
oviposition.
However, a single chemical signal may act as both as pheromone and 
allelochemical, as attractant as repellent.
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Figure 4:Types of semiochemicals Figure 5:Biosynthetic pathways leading to the release of plant volatiles.

Insect-Plant Interactions

Interactions between plants and insects can be both antagonistic and 
mutualistic [84,85]. The plant volatiles are signals used by insects to locate 
hosts, find mates, prey and select oviposition sites [86]. The majority 
of volatiles collected from plants, and grains are: terpenoids, fatty acid 
derivatives, benzenoids and nitrogen-containing compounds. Some of the 
volatiles are specific to certain species, while others are general and found 
in many species [87,88]. Once released by a source (Figure 5), the volatiles 
are dispersed (Figure 6), mixed, and diluted by the ambient motion of air 
to form a shifting and filamentous plume [89]. The relationship between 
insects and plants is largely influenced by the ambient air that disperses odor 
molecules. The olfactory world is characterized by constant movement and 
flux. Gradients of plant odors do not concentrate a few centimeters distant 
from a plant due to air turbulence [6]. Explicitly, host odors exist in the form 
of pockets blowing downwind along with the non-odorous air creating an 
odor gradient. As the wind swings about, the order is broken into a series of 
pockets (Figure 6). And, by positive anemotaxis the insects will identify and 
reach a food source [90]. Indole, a product of the shikimic acid pathway, is 
formed from indole-3-glycerol-P either as an intermediate in Trp biosynthesis 
or by a Trp-independent pathway leading to a family of nitrogen-containing 
defense compounds (e.g. 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one) 
[91]. Sesquiterpenes are synthesized via the isopentenyl pyrophosphate 
(IPP) intermediate following the classical mevalonate pathway, whereas 
monoterpenes and diterpenes are synthesized via an alternative IPP pathway 
with glyceraldehyde-3-P and pyruvate identified as the direct precursors of 
IPP [92]. The mevalonate pathway is localized in the cytosol and reactions 
to the non-mevalonate pathway are localized in plastids. The homoterpene 
(E) -4,8-dimethyl-1,3,7-nonatriene and (E, E) -4,8,12-trimethyl-1,3,7,11-
tridecatetraene are derived from their 15 and 20 carbon precursors, farnesyl- 
and geranylgeranyl-pyrophosphate, respectively, by a series of enzymatic 
steps with the overall loss of four carbon units [93]. The green-leaf volatiles 
derive from linolenic acid via a 13-hydroperoxylinolenic acid intermediate 
[94]. This oxidized linolenic acid, instead of losing water and committing the 
molecule down the defense signaling jasmonic acid pathway, is cleaved to 
form two fragments of 12 and six carbon units (Figure 3). 

Ratio-Specific Odor Recognition

Numerous electrophysiological studies on a wide range of phytophagous 
insects have demonstrated that peripheral receptors are tuned to the detection 
of ubiquitous plant volatiles. Because phytophagous insects generally 
recognize the host odor by using ratios of common plant volatiles, and 
recognition is thus not restricted to species-specific compounds, it would 
appear that the central processing of peripheral signals is extremely important 
[88]. Many insect studies have suggested that generalist olfactory receptors 
are responsible for host plant odor perception, but there is some evidence 
for the presence of specialist olfactory receptors for the detection of plant 
odor in insects such as Spodoptera littoralis. Pheromone detectors usually 
are very sensitive and selective to their specific key compounds. The neurons 
are likely to function as labeled lines, with each type of neuron carrying 
information about a single odorant compound [96]. Chemical cues released 
into the air can guide moths (nocturnal flyers) to food sources or mating sites 
over long distances [97], even at very low concentrations (a few molecules 
of pheromone or plant odors). Different flower species often share many 
volatile components [88,98], but their combination and concentration are 
unique to each species, 

The variety of green-leaf volatiles are formed from this second pathway by 
multiple rearrangement steps of the six-carbon (Z) -3-hexenal [95].

 

 

Figure6: Dispersal of odour source [6].
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forming an “odour code” [99] that specialist insect may use to identify their 
hosts. Ratorderf compounds are assumed to drive host plant location in 
insects [16,88,100]. Even the lowest level of a compound in a blend might 
contribute to the attraction of an insect species to its host plant [101,102].

Evolution in Pest-Control Strategies

The primary objective for pest control was to avoid the spread of diseases 
by insects through land managing, improved housing or sanitation of food 
facilitation before storing. Indeed, the continuous effort for controlling pest 
led early to the production of DDT, a remarkable compound that is highly toxic 
to most insects and long-lasting in effect. Widely used in agriculture for many 
years, DDT is not anymore an ideal insecticide because of environmental 
concerns. Similar ecological problems were encountered with many 
successors to DDT like Dieldrin or Endrin. In other words, the continuous 
use of synthetic insecticides, in particular, has not only caused death through 
poisoning, accumulated in man, concentrated in food chains, but also 
caused resistance in pest populations and destroyed parasites, predators and 
pollinators. Thus, biological methods as well as the use of semiochemicals 
becomes increasingly important with the increase of the restriction on 
the use of undesirable insecticides [103]. We have to remember that, the 
biological methods include introducing pest strains that carry lethal genes or 
parasitoids, while semiochemicals consist of the use of pheromones to trap 
and disrupt mating behavior of the insect pests. The role of feeding-induced 
plant volatiles in host habitat location by natural enemies is well documented 
[85,104-107]. Exploitation of plant volatiles that attract natural enemies has 
been potential for enhancing biological control in agroecosystems [108]. For 
instance, synthetic herbivore-induced plant volatiles (HIPVs) have been used 
to attract and retain beneficial insects into vineyards and hopyards [109,110]. 
However, a successfully pest management requires combined strategies for 
an adequate long-term solution [111]. And, the presence of some insect pests 
in the field does not automatically result in damage or yield loss. Therefore, 
there is a threshold that should be reached before deciding treatment.

Pheromones and Semiochemicals in Pest Control

The characterization of the first insect sex pheromone was established by 
[112], and was isolated from female Bombyx mori (Lepidoptera). This 
discorvery led to the development of commercial activities in the synthesis 
of semiochemicals previously identified as potential agents for controlling 
pests. Since then we have assisted the replacement of synthetic insecticides 
with pheromone products [81,97], and the emergence of a new scientific 
discipline: the chemical ecology or Chemical communication. In parallel, 
the gas chromatography appeared in chemistry and brought simplicity 
in identification of volatile molecules. Rapidly, the economic interest for 
using pheromone compounds in pest controls was updated and included 
in Integrated Pest Management (IPM) programs [70], which imply various 
strategies depending the goals and scopes to achieve. Monitoring of insect 
populations, trapping by using traps lured with synthetic attractant associated 
with a killing substance [113], Push-pull strategy, which consists of pushing 
away crop enemies while luring them to the pheromone dispensers containing 
killing substances, is among of the current IPM strategies [114-118]. We have 
to precise that the aggregation pheromones are one of the

most ecologically selective pest suppression methods. They are nontoxic and 
effective at very low concentrations [119]. An Additionally, crop rotations, 
field sanitation (crop residue management), seed quality, weed management, 
tillage, healthy soil, crop and variety selection, intercropping etc, are also part 
of integrated pest management strategies, especially in organic crop systems.

Conclusion

Understanding the technical terms relevant to insect behavior and chemical 
messenger’s transduction could be of paramount importance for beginners 
in the entomology field. All these terms addressed to here have been already 
previously reported in different sources. However, the effort provided here 
to collect and define and differentiate the similar terms in an easy way could 
be very useful for many people in the modern agricultural entomology 
field in which the terms such as semiochemicals, are frequently used.
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