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Abstract

Our study deals with a thermoelastic micropolar material with voids including the time derivative among the independent 
constitutive variables.

Within this theory we formulate the mixed initial-boundary value problem and prove an uniqueness result regarding the solu-
tion of this problem and analyze the decay of dilatational acceleration waves.

Introduction

Materials which operate at elevated temperature will invariable be 
subjected to heat flow at some time during normal use. The heat 
flow will involve a temperature distribution which will inevitably 
give rise to thermal stresses.

The role of the pertinent material properties and other variables 
can affect the magnitude of thermal stress must be well under-
stood and all possible mode of failure must be considered.

Our following considerations can be useful in other fields of ap-
plications which deal with porous materials as geological mate-
rials, solid packed granular and many others. Beginning of the 
investigations on porous materials was the Goodman and Cowin 
theory of granular theory [1]. In this theory and also in the theory 
of Cowin and Nunziato [2], the authors introduce an additional 
degree of freedom in order to develop the mechanical behavior 
of porous solids in which the matrix material is elastic and the 
interstices are voids material. interstices are voids of material. The 
intended applications of this theory are to geological materials 
like rocks and soil and to manufactured porous materials, like ce-
ramics and pressed powders. The theory of Cowin and Nunziato 
(see also [3]) is dedicated to non conductor of heat materials. The 
basic premise underling this theory is the concept of a material 
for which the bulk density is written as the product of two fields, 
the matrix material density field and the volume fraction field 
(see also, [4-6]). The theory of thermoelastic materials with voids 
proposed by Iesan in [7] is a straightforward generalization of the 
linear elastic body, but the author neglected that the changes in 

the volume fraction result in internal dissipation in the material. 
Other results regarding the bodies with microstructure can be 
find in studies [8-13].

In our study we extend the Cowin and Nunziato theory to cover 
the micropolar material by adding into the set of constitutive vari-
ables the time derivative of the voidage to include the inelastic 
effects.

Basic Equations

Consider a body that at time t = 0 occupies a properly regular re-
gion B of Euclidean three-dimensional space R3. Assume that the 
boundary of B, denoted by ∂B, is a sufficiently smooth surface to 
admit the application of divergence theorem. Also, we denote the 
closure of B by B¯. Throughout this paper we refer the motion of 
the continuum to a fixed system of rectangular Cartesian axes Oxi, 
(i = 1, 2, 3) and adopt Cartesian tensor notation. The italic indices 
will always assume the values 1, 2, 3, whereas Geek indices will 
range over the value 1,2. A superposed dot stands for the mate-
rial time derivative while a comma followed by a subscript denotes 
partial derivatives with respect to the spatial respective coordi-
nates. Einstein summation on repeated indices is also used. Also, 
the spatial argument and the time argument of a function will be 
omitted when there is no likelihood of confusion.

In the reference configuration the bulk density q, the matrix den-
sity γ and the matrix volume fraction ν are related by

ρ0 = γ0ν0

Research Article

https://gnomepublications.org/mathematics-statistics-computing.php


Marin Marin, Georgiana Precup. On Decay of Dilatational Acceleration Waves in Thermoelasticity. J Math Stat Comput. 2019;1(1): 001.01.01.

2

  OPEN ACCESS

where γ0 and ν0 are spatially constants. The independent variables 
which describe the motion of the micropolar thermoelastic body 
with voids are:

- ui(x, t), φi(x, t) - the displacement and microrotation fields from
reference config- uration;
- θ - the change in temperature from T0, the absolute temperature 
of the reference configuration, i.e. θ(x, t) = T (x, t) T0;
- σ - the change in volume fraction measured from the reference
configuration volume fraction ν0, i.e. σ(x, t) = ν(x, t) ν0.

Supposing that the initial body is stress free, with zero intrinsic 
equilibrated body force and zero flux rate, we can write the free 
energy function, within linear theory, as follows:

ρΨ = 
, ,

, ,

2
2 2

, ,
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ijmn ij mn ijmn ij ij ijmn ij mn
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ij ij ij ij i i i i
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 ----- (1)

As in [2], f = −ωσ˙ is the dissipation which takes into account of 
the inelastic behavior of the voids. Also, ω is a positive constant. 
By using an usual procedure, with the aid of the free energy func-
tion, we can derive the following constitutive equations:
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 ----- (2)

where εij and γij are the kinematic characteristics of the strain and 
we have the following geometric relations:

, , 0 0, , , .ij j i jik k ij j iu T Tε ε φ γ φ θ σ ν ν= + = = − = −  ---- (3)

With the aid of a procedure similar to that used by Nunziato and 
Cowin in [3], we obtain the following fundamental equations (see 
also, [9, 10]):

- the equations of motion:

,

, ;

¨ ,ij j i i

jij j ijk jk i ij

t F qu

m t qM I

ρ

ε ϕ

+ =

+ + =


 ----- (4)

- the balance of the equilibrated forces:

, ;i ih g Lρ ρκ σ+ + =


 ----- (5)

- the energy equation:

0 .ijT q rρ η ρ= +


 ----- (6)

In the above equations we have used the following notations:

q - the constant mass density;
η - the specific entropy;
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T0 - the constant absolute temperature of the body in its 
reference state;
Iij - coefficients of microinertia;
κ - the equilibrated inertia;
ui - the components of displacement vector;
φi - the components of microrotation vector;
φ - the volume distribution function which in the reference state 
is φ0; 
σ - the change in volume fraction measured from the reference 
state;
θ - the temperature variation measured from the reference tem-
perature T0; εij, γij-kinematic characteristics of the strain;
tij - the components of the stress tensor;
mij - the components of the couple stress tensor;
hi - the components of the equlibrated stress vector;
qi - the components of the heat flux vector;
Fi - the components of the body forces;
Mi - the components of the body couple;
r - the heat supply per unit time;
g - the intrinsic equilibrated force;
L - the extrinsic equilibrated body force;

Aijmn; Bijmn; ....., kij - the characteristic functions of the material, and 
they obey the symmetry relations

, , .ijmn mnij ijmn mnij ij jiA A C C k k= = =  ----- (7)

The entropy inequality implies

2

, ,
0

1 0.ij i jk
T

θ θ ωσ− − ≤


 ----- (8)

The equations (4) and (6) are analogous to the classical equations 
of motion and, re- spectively, to the balance equation, whereas the 
new balance of equilibrated force (5) can be motivated by a vari-
ational argument as in [14].

The mixed initial-boundary value problem within context of ther-
moelastic theory of micropolar bodies with voids is complete if we 
give the boundary and initial conditions. So, the boundary condi-
tions can be deduced as in [15] and ve must give the additional 
data for the surface continuous temperature field on the bound-
ary ∂B of the geometry of the body B and for the time interval 
for which the solution is desired. Also, we must add the initial 
temperature field. In conclusion, we have the following initial 
conditions:

0 1

0 1

0 0 1

( ,0) ( ), ( ,0) ( ), ,
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= = ∈

= = ∈
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 ----- (9)

and the following prescribed boundary conditions

iiu u
−

=  on 1 0[0, ], i ij j iB t t t n t
−

∂ × ≡ =  on 1 0[0, ],CB t∂ ×

iiϕ ϕ=  on 2 0[0, ],B t∂ ×  i ij j im m n m≡ =  on 2 0[0, ],cB t∂ ×  --(10)

σ σ=  on 3 0[0, ],B t∂ ×  i ih h n h≡ = on 3 0[0, ],cB t∂ ×

θ θ=  on 4 0[0, ],B t∂ ×  i iq q n q≡ =  on 4 0[0, ],cB t∂ ×

where ∂B1, ∂B2, ∂B3 and ∂B4 with respective complements ∂Bc
1, 
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∂Bc
2, ∂Bc

3 and ∂Bc
4 are subsets of ∂B, ni are the components of the 

unit outward normal to ∂B, t0 is some instant that may be infi-

nite, 0 1 0 1 0 0 1, , , , , , , , , , , , ,i i iii i i iu u u t m qϕ ϕ θ σ σ ϕ σ θ  and h- are
prescribed functions in their domains.

By a solution of the mixed initial-boundary value problem 
for the thermoelasticity of micropolar bodies with voids, 
in the cylinder 0 0[0, ]B tΩ = ×  we mean an ordered array 
(ui, φi, σ, θ) which satises the equations (4)-(6) for all (x; t) ε  
Ω0, the boundary conditions (9) and the initial conditions (10). 
Introducing equations (2) and (3) into equations (4), (5) and (6), 
we obtain the following system of equations.
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 ---(11)

Main Results

In the first part of this section, we prove the uniqueness of solu-
tion for the mixed problem within context of above thermoelasto-
dynamics by using an energetic method. 

Consider two solutions (ui
(1), φi

(1), σ(1), θ(1)) and (ui
(2), φi

(2), σ(2), θ(2)) of our 
problem for the same body B, subjected to the same body force 
Fi, the same body couple Mi, the same extrinsic equilibrated body 
force L and the same heat supply r. For each solution we have an 
appropriate set of boundary and initial conditions of the same 
kind of (10) and (9). Because of the linearity of the eld equations 
and conditions, the difference of two solutions is also a solution of 
our problem, but corresponding to the null body force, body cou-
ple, heat supply, extrinsic equilibrated body force and null bound-
ary and initial data.

Let i, , i, ( )u ϕ σ θ  be the difference of two solutions, that is

(2) (1) (2) (1) (2) (1) (2) (1), , , .i i i i iu u u ϕ ϕ ϕ σ σ σ θ θ θ= − = − = − = −

We also denote with superposed bar the quantities corresponding 

to the difference of two solutions, for instance (2) (1) .ij ij ijt t t= −

The dierential equations governing the difference solutions are:
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 ----- (12)

                         ----- (13)

                         ----- (14)

With these differences in mind, we can state and prove the unique-
ness result. First, we consider the Biot's potential
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U = ρ(ε-T0η) ---- (15)

where ε is the internal energy per unit mass. Remember the fact 
that the free energy function ψ (the Helmholtz's function) is ex-
pressed as

ψ = ε - Tη, ----- (16)

By eliminating ε from (15) and (16), we deduce

, ,

2
2 2

, , ,
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ij ij ij ij ijk k ij ijk k j
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 ----- (17)

Let K be the kinetic energy per unit mass, that is

21 ( ).
2

i j i jijK u u I kρ ϕ ϕ σ= + +
    

 ----- (18)

In the next theorem we prove an estimation that will be used to 
prove the uniqueness result.

Theorem 1. Let (ui, φi,σ, θ) be a solution of the mixed initial-bound-
ary value problem consists of the equations (11), the boundary con-
ditions (10) and the initial conditions (9). Then the energy equation 
become:

0 0
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 --- (19)

Proof. With the aid of the constitutive equations (2) and the sym-
metry relations (7), we can write:
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On the other hand, in view of the equations of motions (4), equa-
tions of energy (6), the balance of the equilibrated forces (5) and 
the geometrical equations (3), it results:

,

0

, ,

,
0

2

,

1( )

1

1 ( )
2

( ).

i

i i i j

ij iijij ij i

j ijj ij i i i

ii i i i

ij

ij j ij ij i i

t m h g
T

ti u m h q
T

F u M L r q
T T

u u I
t

i m a
t

ρε γ σ σ µθ

ϕ σ θ

ρρ ρ ϕ ρ σ θ θ

ρ ϕ ϕ ρκ σ

β ε θ α γ θ σθ σ θ

+ + − − =

+ + + +

+ + + − −

∂
+ + −

∂
∂

+ + +
∂

    

  

  

    

 ----- (21)

https://gnomepublications.org/mathematics-statistics-computing.php


Marin Marin, Georgiana Precup. On Decay of Dilatational Acceleration Waves in Thermoelasticity. J Math Stat Comput. 2019;1(1): 001.01.01.

4

  OPEN ACCESS https://www.enlivenarchive.org/mathematics-statistics-and-computing/

By equalizing the right sides of the relations (20) and (21), we get:
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 ----- (22)

Now, by integrating the identity (22) over B, we arrive at the de-
sired result (19) and the proof of Theorem 1 is complete.

Based on the result of Theorem 1, we can prove the uniqueness of 
the solution for considered mixed problem.

Theorem 2. If we assume that U is non-negative then there exist at 
most one solution for the problem given by the equations (11), the 
boundary conditions (10) and the initial conditions (9).

Proof. Let (ui
(1), φi

(1), σ(1), θ(1)) and (ui
(2), φi

(2), σ(2), θ(2)) be two solutions 
of our problem corresponding to the same Fi, Mi, L and r and sub-
ject to same boundary conditions of the mixed type as in (10). We 
denote with ( , , , )i iiu ϕ σ θ  the difference of two solutions. For the
difference, the relation (19) reads:

2

,

0

1( ) 1 .i

B B

d U K dV q dV
dt T

θ ωσ
 

+ = −  
 

∫ ∫


 ----- (23)

In view of (8), we obtain:

( ) 0,
B

d U K dV
dt

+ ≤∫  ---- (24)

such that by integrating in (24) from 0 to t, we get:

( (0) (0)) ( ( ) ( )) .
B B

d dU K dV U t K t dV
dt dt

+ ≥ +∫ ∫  ----- (25)

Because (ui
(1), φi

(1), σ(1), θ(1)) and (ui
(2), φi

(2), σ(2), θ(2)) satisfy the same 
initial dat, we conclude that the difference ( , , , )i iiu ϕ σ θ  corre-
sponds to the null initial data, i.e.

0i ij iji iu t m qϕ= = = = =  on 0[0, ],B t∂ ×

such that (25) requires:

0 ( ( ) ( )) .
B

d U t K t dV
dt

≥ +∫  ----- (26)

But ( ) ( )U t and K t   are positive denite and then they be zero eve-
rywhere in B. This means that the difference of solutions must 
vanish everywhere in B for all times and this complete the proof 
of Theorem 2.
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